Continuous Analysis of Fresno Aerosols by Size, Time, and Elemental Concentrations, March – December, 2001

Thomas A. Cahill, Steven S. Cliff, Michael Jimenez-Cruz, and ¹Kevin D. Perry, DELTA Group, University of California, Davis, http://delta.ucdavis.edu and

¹Dept. of Meteorology. University of Utah

Purpose of the Study

Fresno, California, has one of the highest childhood asthma rates in California.

Fresno also is in violation of state and federal air quality criteria –

ozone in summer,

 PM_{10} and $PM_{2.5}$ in winter.

To what degree does Fresno pollution impact the asthma rate?

Health and Aerosols in the Central Valley of California Data Relative to Shasta and Butte counties

Ischemic Heart Mortality Annual PM10 -- Childhhod Asthm 2.5 Values Relative to Butte and Shasta 2 1.5 0.5 0

Design of the Study

In response to the need to get a wide variety of aerosol metals as a function of size and time to support short term medical data for the Fresno Asthmatic Children's Environment Study (FACES), the DELTA Group designed and implemented

- continuous aerosol sampling with
- 6 hr or 3 hr time resolution (set by the analysis protocols)
- in 8 size modes from 10 μm to 0.09 μm
- from March 10, 2001 to December 21, 2001,
- at the Fresno First Street Super-site in a residential neighborhood,
- examining over 1500 time periods, 12,000 samples, and yielding over 1/3 million S-XRF elemental values.

Implementation

- Sampling: a PM10 modified DELTA Group slotted DRUM impactor, with size cuts at 10, 5, 2.5, 1.15, 0,.75, 0.56, 0.34, 0.26, and 0.09 μm aerodynamic diameter (Raabe-Marple values).
- Analysis: Synchrotron x-ray fluorescence (S-XRF) at the DELTA Group x-ray microprobe of the Advanced Light Source, Lawrence Berkeley National Laboratory.
- Quality Control:
 - Routine re-analysis of previously analyzed samples,
 - Comparison with side by side Dichot samplers,
 - Re-analysis of ARB Dichot samples,
 - Comparisons with IMPROVE PIXE, XRF.

43 cm

DELTA Group slotted 8 DRUM Impactor

- 8 size ranges:
 - 10.0 to 5.0 μm (std PM₁₀ inlet)
 - 5.0 to 2.5 μm
 - 2.5 to 1.15 μm
 - 1.15 to 0.75 μm
 - 0.75 to 0.56 μm
 - 0.56 to 0.34 μm
 - 0.34 to 0.26 μm
 - 0.26 to 0.09 μm
- 16.7 I/min, critical orifice control, ¼ hp pump
- 10.0 x 168 mm Mylar strips
- For 42 day run, 4 mm/day,S-XRF beam 0.5 mm, = 3 hr.
- Field portable
 - 10 kg, 43 cm × 22 cm × 13 cm

Stage 8 of DRUM , 0.26 > D_p > 0.09 μm diameter, showing strong diurnal pattern; the deposit shown covers 3 weeks.

DELTA Group Synchrotron-XRF Facility at the LBNL Advanced Light Source

For scale? (At least it's not duct tape.)

Typical S-XRF Spectrum

Raw data, Teflon substrate with no blank subtraction

All filters S-XRF vs ARB XRF 1.02 ± 0.11 vs ARB RAAS 1.29 ± 0.58 ARB XRF vs ARB RAAS

 1.29 ± 0.63

DRUM S-XRF vs ARB XRF and ARB RAAS

note: it takes 24 6 hr 6 size cuts S-XRF measurements to match a single 24 hr PM_{2.5} filter

DRUM, Dichot, and FRM agree well for fine particles

Zinc; Dichot and DRUM vs FRM

The DRUM sees more soil, almost all lying between 2.5 and 1.15 µm

Silicon Dichot vs FRM

Aerosols at the Fresno 1st Street Supersite

PM2.5 Mass, 2001

Silicon Aerosols at Fresno during the FACES Study

DRUM Impactor, S-XRF Analysis Data, 6 hr resolution

DRUM Impactor, S-XRF Analysis Data, 3 hr resolution

24 hr Nitrate Aerosols Fall, 2002

Strontium Aerosols at Fresno during the FACES Study

DRUM Impactor, S-XRF Analysis Data, 6 hr resolution

DRUM Impactor, S-XRF Analysis Data, 3 hr resolution

Copper Aerosols at Fresno during the FACES Study DRUM Impactor, S-XRF Analysis Data, 6 hr resolution

DRUM Impactor, S-XRF Analysis Data, 3 hr resolution

Zinc Aerosols at Fresno during the FACES Study

DRUM Impactor, S-XRF Analysis Data, 6 hr resolution

DRUM Impactor, S-XRF Analysis Data, 3 hr resolution

Very fine aerosols characteristic of diesels/smoking cars

Aerosols at the Fresno First Street Super-site

Very fine (0.26 > Dp > 0.09 micron) elemental concentrations for FACES, CARB S-XRF analyses via DELTA Group, UC Davis

Diesel Particles by MOUDI Impactor and S-XRF Sample Run # 4, CA Fuel; no grease

For micrograms/m3, times 8.7 DELTA Group, S-XRF, UC Davis

Very fine zinc to diesel mass = 1800 ± 1300

Very fine aerosols characteristic of diesels/smoking cars

Aerosols at the Fresno First Street Super-site

Very fine (0.26 > Dp > 0.09 micron) elemental concentrations for FACES, CARB S-XRF analyses via DELTA Group, UC Davis

Very fine (0.26 > Dp > 0.09) Aerosols at Fresno, CA

Very fine (0.26 > Dp > 0.09) Aerosols at Fresno, CA

Supersite, First Street, > 1 km from nearest freeway

— Mass measured — Mass predicted based on U. Minn. diesels, CA fuel

Aerosols at the Fresno First Street Super-site

Very fine (0.26 > Dp > 0.09 micron) elemental concentrations for FACES, CARB S-XRF analyses via DELTA Group, UC Davis

Aerosols at the Fresno First Street Super-site

Very fine (0.26 > Dp > 0.09 micron) elemental concentrations for FACES, CARB S-XRF analyses via DELTA Group, UC Davis

Aerosol Information from Particle Size

Aerosol size distributions at the Fresno Super-site November 15 - December 22, 2001 Soil, biomass, and diesel/smoking car elements derived elements

Aerosol Information from Particle Size

Aerosol size distributions at the Fresno Super-site November 15 - December 22, 2001 Soil, biomass, and diesel/smoking car elements derived elements

Zinc x 10
Potassium
Copper x 10

Conclusions

- We have provided 1500 distinct periods, mostly 3 hr (some 6 hr) duration for comparison with asthma data.
- In each of these periods, we can provide particle size (8 modes) and elemental composition (32 elements).
- We find that there are sharp (order of magnitude)
 excursions in transition metals of a few hours duration
 throughout the year.
- Winter time exhibits a high level of very fine particles associated with diesels and smoking cars.
- While there are inherent differences between continuous impactor sampling and filters, we have achieved excellent S-XRF quality assurance comparisons against ARB XRF, IMPROVE and university laboratories.

Acknowledgements

- California Air Resources Board Fresno FACES study
- National Renewable Energy Laboratory DRI diesel tests
- Department of Energy Lawrence Berkeley NL and the Advanced Light Source – S-XRF capabilities
- National Science Foundation ACE-Asia DRUM samplers and development